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Moduli Spaces of Riemann Surfaces

summer term 2022

Prof. Dr. Carl-Friedrich Bödigheimer

— not quite finished ! —
The Topic.

The topic of this lecture course are the moduli spaces of Riemann surfaces, presented from a
topologist’s point of view. We will define them and construct models for them, i.e., replace
them by a homotopy-equivalent bundle. Our ultimate aim is to study their homology.

Let us denote by F = Fm
g,n a connected, compact and oriented surfaces of genus g with n

boundary curves and m punctures. We consider the group Diff+ = Diff+(F ) of diffeomor-
phisms which preserve the orientation, fix the boundary pointwise and possibly permute the
punctures. The components of this large group are in almost all cases contractible; thus the
interesting information is stored in the group Γm

g,n = π0(Diff+(Fm
g,n)), the so-called mappping

class group.

Connection with my Seminar on Mapping Class Groups.

We study the mapping class group in my seminar in the summer term 2022. We will learn
the basics and many important results, some of geometric nature, some of group-theoretic
nature, some of homological nature. See my www-page for the seminar programm. In the
lecture course I will sometimes report some facts about mapping class groups without proofs,
sometimes I will give proofs.

Moduli Spaces as Objects of algebraic Topology.

Topologists are interested in this group, since Diff+(Fm
g,n) is the structure group for surface

bundles. Therefore the classifying spaces BDiff+(Fm
g,n) = BΓm

g,n is the natural place for
characteristic classes of surface bundles. Thus they would like to compute the (co)homolgy
of this group, which agrees with the (co)homolgy of the space BΓ)mg,n.

The moduli space Mm
g,n is the space of conformal structures on Riemann surfaces of the give

topological type. That for a fixed topological type the complex structure of a surface can
vary continuoiusly, is an obvious phenomenon for a complex, differential or algebraic geometer,
but a topologist studies usually rigid structures, not structures which do vary continuously.
Nevertheless, theses spaces are vary interesting and important, as we see in a moment.

The topology of these spaces is quite subtle and it took a long time until Teichmüller could
find a way to define and study it. The Teichmüller theory connects the moduli spaces and the
mappping class groups as follows: When n ≥ 1, then Mm

g,n has the homotopy type of BΓm
g,n

and thus they have the same homology groups. (For n = 0, this is at least true rationally.)
Clearly, topologists should study them.
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The easiest example of a moduli space is the moduli space of all annuli, so g = 0, n = 2,m = 0,
where the ratio of the outer and inner radius is the only conformal invariant; thus we have
a 1-dimensional moduli space M0

0,2 homoemorphic to the ]1,∞]. Another example would be
the moduli space of all tori or elliptic curves, so g = 1, n = 0,m = 0, given as the quotient
of the complex plane by a lattice, where a basis of the lattice, up to scaling, rotation and a
Möbius transformation, determines the surface; thus we have a 2-dimensional moduli space
M0

1,0, homemorphic to a disk (the upper half-plane modulo the action of SL2(R).

A Brief History of Moduli Spaces.

It is not easy to say, who first talked about a ’space of conformal structure’ of a given surfaces,
since already the notion of the underlying homeomorphism or topological type was not yet
really developed. But the story begins with the pioneers of complex analysis. Riemann
noticed that (for g ≥ 2) the moduli space M0

g,0 has dimension 6g−6, by simply counting local
parameters in certain equations, the solutions of which formed a surface. The topology of
these parameter spaces was for a long time very vage, and with the exception of a few examples
(like the once mentioned above), many results had only a local nature (like Riemann’s formula
for the dimension). The global nature of these spaces was largely unknown.

In the meantime, while group theory and topology where developed - and for a major part
jointly developed -, the mapping class group Γm

g,n was studied by pioners like Dehn and Nielsen.

It was Teichmüller’s great achievement to clarify the topology of the moduli space: he defined
the so-called Teichmüller space with its metric and defined an action of the mapping class
such that the quotient by the action is the moduli space. Most importantly, he showed that
the Teichmüller space space is contractible. In all cases where the action is free (e.g., when
n ≥ 1) the moduli space has the homotopy type of BΓ, classifying space of the mapping
class group. This in turn means that (1) the homotopy groups of Mm

g,n and Γm
g,n agree, in

particular, there is only the fundamental group (which is Γm
g,n) and all higher homotpy groups

vanish; (2) the homology groups of Mm
g,n agree with the (group) homology of the group Γm

g,n;
(3) the moduli space is a (non-compact) manifold.

The next decades saw a lot of research on the mapping class group: generators were studied,
a presentation was found, allowing the computation the first homology group H1(M

m
g,n).

Furthermore, the famous homology classes κi were defined by Mumford, Morita and Miller;
but there was no proof of them being non-triviality. Mumford conjectured, that the stable
rational cohomology is a polynomial algebra generated by these classes. Stable(co)homology
means here: we consider the limit over the stabilization maps H∗(M

m
g,n) → H∗(M

m
g+1,n),

defined by attaching a torus with two boundary curves. It is a fundamental result of Harer in
1984, that these homomorphisms are isomorphisms for ∗ < 2

3g. Furthermore, Harer computed
the second homology group H2(M

m
g,n) and the homological dimension of the moduli spaces.

A major breakthrough was the proof of the Mumford conjecture by Madsen & Weiss in 2007.
This settles the rational stable homology.

Stable versus Unstable.

As is often the case in topology, the stable situation is easier (or say at least better approach-
able by general methods) than the unstable situation. A lot of ’noice’ just disappears and
the picture becomes clearer, when we run to infinity with the genus. We do know very little
about the unstable homology (integrally or with other coefficients) of Mm

g,n. But I will give a
survey of what is known.
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Parallel Slit Domains.

The models for moduli spaces we want to construct are the spaces Parmg,n of parallel slit
domains, i.e., configuration spaces of pairs of horizontal slits in one ore several complex
planes. This is an old idea, going back to Hilbert in 1909, see [Hi] for the original idea or
see [A-B-E] for a quick overview. They share many properties with classical configuration
spaces of the plane, but their topology needs quite an amount of combinatorics of symmetric
groups. Roughly speaking, the two slits belongig to a pair start with the same real part and
run to the left to infinity; this is generic picture. And when two slits (not in a pair) meet, the
shorter slit can jump ’over the longer slit to other side of the partner of the longer slit’. Let
this suffice as a hint to the sublte topology of these spaces. And instead of too many words
here just look at the three figures below to capture the taste of it.
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Figure 1: Two examples of generic parallel slit domains. The letters indicate the gluing of
the upper and lower banks of the slit pairs. LEFT EXAMPLE: g = 1, n = 1,m = 0 and it is
a torus with one boundary curve. The Figures 2 und 3 below show the making of this surface
in two steps. RIGHT EXAMPLE: g = 0, n = 1,m = 2 and it is a twice punctured disc.

D

A

B

C

A

B

S2

S1

D !

"

#

$

S2

Figure 2: The surface for Figure 1 (left) is half-way finished.
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Figure 3: This is the finished surface.

Homology Operations.

Special attention will be paid to homology operations on the entire family of moduli spaces.
Take two Riemann surfaces both with say one boundary curve. Then we can attach a pair-of-
pants with one leg to each of the boundaries and keep the waist as the boundary of the new
amalgamated surface. One imagines the pair-of-pants best as the unit disk D in the plane
with two disjoint disks in its interior removed; the outer boundayry is the waist, two other
boundaries are the legs. Attach the two surfaces putting them above the plane in 3-space,
just having their boundaries touch the two interior boundaries inside the disk. If we fix the
pair-of-pants, the construction gives us a product

µ : Mm1
g1,1
×Mm2

g2,1
−→Mm1+m2

g1+g2,1
. (0.1)

And thus we get for the homology groups a product

Hi(M
m1
g1,1

)⊗Hj(M
m2
g2,1

) −→ Hi+j(M
m1+m2
g1+g2,1

) , (0.2)

called Pontrjagin product.
But what, if we do not fix the pair-of-pants, but use the ’space of all pair-of-pants’, namely
the space of any two interior disjoint disks removed ? Clearly, this space is equivalent to the
(unordered) configuration space C2(D) of two ’distinct, but indistinguishable’ points (as a
physicist would say). It is equivalent to a circle: just let the two smaller disks rotate around
each other. Explicitly, we see an operation of C2(D) on a product of two moduli spaces

M : C2(D)×Mm1
g1,1
×Mm2

g2,1
−→Mm1+m2

g1+g2,1
. (0.3)

Each point C2(D) gives us a multiplication as above, so we have not one, but a space full of
µ’s. True, any two points induce the same Pontrjagin product (since the space is connected),
but using the rotation parameter ’to integrate over’ we can define a ’higher product’

[ , ] : Hi(M
m1
g1,1

)⊗Hj(M
m2
g2,1

) −→ Hi+j+1(M
m1+m2
g1+g2,1

), (0.4)

raising the sum of degrees by one; it is called the Browder bracket. Actually, for any non-trivial
homology class in C2(D) we get a product. And working modulo 2 we can define 1

2 [x, x], a
half-rotation instead of the full rotation [x, y], and called Dyer-Lashof operation

Q : Hi(M
m
g,n;Z2) −→ H2i+1(M

2m
2g,2n;Z2) . (0.5)
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One can imagine that we amalgamate not only two, but k surfaces, so the configuration spaces
Ck(D) enter the scene and we find a system of operations like (3). One calls the system of
all configuration spaces an operad, namely the ’little disks operad C2 in dimension 2’, and
it operates on the family of moduli spaces. Therefore we need to understand the homolgy
groups of configuration spaces.
Note that in the special case g = 0 the moduli space of an m-fold punctured disk Mm

0,1 itself
is equivalent to the configuration space Cm(D); furthermore, this is the classifying space of
the m-fold braid group.
There are many spaces on which the little disks operad in dimension d operates, most im-
portantly the d-fold loop spaces ΩdX of a space X, and there is a well-developed theory and
many homology computations.

The Lecture Course

This lecture course is an experiment insofar the material can not be found in textbooks and
is based on many older and younger research articles or my own ideas about theses spaces.
However, there is a vast literature on moduli spaces, usually from the point of view of complex
geometry, algebraic geometry or differntial geomtry. I will give hints to the literature during
the course. So let me be brief here. For the mapping class group I recommend the book
[Fa-Ma]. For the moduli spaces there is a vast literature; you can for example consult the
seven volumes [HB].
If you want to attent this lecture course, you should be familiar with the basic concepts of
Riemann surfaces, not necessarily moduli spaces. We also need good knowledge of advanced
concepts of Algebraic Topology. I will do the course in a rather slow pace, at least in the
beginning.
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